DATA VISUALIZATION WITH MATPLOTLIB
Matplotlib is a powerful data visualization library in Python that allows you to create a wide range of static, interactive, and animated visualizations. It provides a high-level interface for generating various types of plots, including line plots, scatter plots, bar plots, histograms, pie charts, and more. Let's explore some common data visualization techniques using Matplotlib:
1. Line Plot: Line plots are used to visualize the trend of data points over a continuous variable (e.g., time, temperature).
import matplotlib.pyplot as plt
# Data
x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]
# Create a line plot
plt.plot(x, y)
# Add labels and title
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Line Plot')
# Display the plot
plt.show()
2. Scatter Plot: Scatter plots are useful for visualizing the relationship between two numerical variables.
# Data
x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]
# Create a scatter plot
plt.scatter(x, y)
# Add labels and title
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Scatter Plot')
# Display the plot
plt.show()
3. Bar Plot: Bar plots are used to compare categories of data.
# Data
categories = ['A', 'B', 'C', 'D']
values = [10, 15, 8, 12]
# Create a bar plot
plt.bar(categories, values)
# Add labels and title
plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Bar Plot')
# Display the plot
plt.show()
4. Histogram: Histograms display the distribution of numerical data.
# Data
data = [10, 12, 15, 18, 20, 22, 25, 28, 30, 32]
# Create a histogram
plt.hist(data, bins=5)
# Add labels and title
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Histogram')
# Display the plot
plt.show()
5. Pie Chart: Pie charts show the proportion of different categories in a dataset.
# Data
categories = ['A', 'B', 'C', 'D']
sizes = [30, 25, 20, 15]
# Create a pie chart
plt.pie(sizes, labels=categories, autopct='%1.1f%%')
# Add title
plt.title('Pie Chart')
# Display the plot
plt.show()
These are just a few examples of the visualizations you can create with Matplotlib. The library offers extensive customization options, including colors, styles, annotations, and legends, allowing you to create publication-quality plots for data exploration and presentation. Matplotlib is a versatile tool for data visualization, and it is often used in combination with Pandas for seamless integration with data analysis workflows.